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The use of a classical eddy parametrization in the analysis of continental boundary 
currents leads to the diffusion of momentum and relative vorticity and fails to 
recognize that the relevant eddies are dominated by the conservation of potential 
vorticity, which in turn may produce an increase in the mean relative vorticity. To 
illustrate this effect, we examine a non-inflected barotropic shear flow destabilized by 
the cross-steam variation in the bottom topography of a continental slope. The finite- 
amplitude evolution of the waves is analysed in a simple model with a step-like bottom 
topography and with a piecewise-uniform potential vorticity distribution. The increase 
in maximum mean vorticity is computed for various values of the Rossby number and 
the topographic elevation, and it is suggested that a similar effect, taking into account 
the isopycnal topography as well as the isobaths, could maintain the large inshore 
shear of the Gulf Stream. Cross-shelf transport of different water ‘types’ (i.e. potential 
vorticity and passive tracers) are also computed and suggested to be pertinent to the 
more realistic oceanic problem involving baroclinic effects. The numerical calculation 
employs the well-known method of contour dynamics, and the Green’s function 
appropriate for the step-like topography is derived. 

1. Introduction 
Continental boundary currents often exhibit a region of relatively strong cyclonic 

shear on their inshore side, as is the case for the Gulf Stream (Brooks & Niiler 1977; 
Brooks & Mooers 1977) where mean shear of the order of the Coriolis parameter can 
be observed over the continental slope. The shelf break region is also the site of strong 
eddy activities leading to the exchange of water with different physical, chemical, and 
biological properties between the deep and the shelf regions. See Ford, Longard & 
Banks (1952), Lee & Mayer (1977), Lee & Atkinson (1983), Lee, Yoder & Atkinson 
(1991) for the Gulf Stream and Sugimoto, Kimura & Miyaji (1988), and Qiu, Toda & 
Imosato (1990) for the Kuroshio. Stern (1991 a, 1993) proposed that the inshore shear 
of a boundary current could be maintained by Counter-gradient vorticity fluxes at the 
steep continental slope, rather than by a classical eddy diffusive parametrization, and 
the particular mechanism investigated involved a net cross-slope mass flux produced by 
downstream topographic variations. 

A different kind of topographic mechanism is discussed here, namely that due to the 
instability of a laminar shear flow along a continental slope. Collings & Grimshaw 
(1980, 1984) have shown that cross-stream topography can destabilize non-inflected 
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FIGURE 1. A laminar shear flow ~ ( y )  with monotonic vorticity C(y) at the edge of a continental slope, 
- of depth h(y)  which changes rapidly at the shelf break, such that the potential vorticity of this current 
PV(y)  = cf+ <(y))/h(y) has an extremum, wherefis the constant Coriolis parameter. 

barotropic currents which are otherwise stable. An illustration is provided by the flow 
in figure 1 which extends across the continental slope and onto a limited part of the 
shelf, with the corresponding relative vorticity decreasing monotonically to zero. 
Suppose that the cross-stream decrease in bottom depth is strong enough at the shelf 
break to produce the necessary potential vorticity maximum for a barotropic 
instability. If the condition is also sufficient, there will be a net eddy transport of water 
with maximum potential vorticity into the deep water thereby increasing the maximum 
mean vorticity in the shear flow by stretching of fluid columns displaced across the 
steep topography. Therefore any small tendency for lateral eddy diffusion of relative 
vorticity could be compensated by these topographically dominated effects at the 
continental slope. 

For simplicity, we will consider a piecewise-constant shear flow ~ ( y )  and a step-like 
topography, for which case a detailed linear instability calculation is available 
(Appendix A). In this model (figure 6), a high-potential-vorticity layer of width 1, on 
the shelf separates lower-potential-vorticity fluids on the semi-infinite shelf from the 
semi-infinite deep region (having the same relative vorticity) on the other side of the 
escarpment ( y  = 0). We shall see that the evolution of the disturbance is quantitatively 
similar to the roll up of cores as in the classical injected shear flow problem (Pozrikidis 
& Higdon 1985; Pratt & Pedlosky 1991), but now a qualitatively different effect on the 
mean vorticity occurs, namely vorticity can be transported up the mean gradient. 

Pozrikidis & Higdon (1987) showed that the instability of two adjoining vortex 
layers leads to the rapid formation of widely spread vorticity cores. Bidlot (1993) 
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considered the same problem for a wall jet, and figure 2 illustrates that even without 
dissipative processes a rapid diffusion of mean momentum and vorticity occurs. 
However, as will be seen, the presence of cross-stream topography in continental 
boundary currents has a profound effect on the eddies and the velocity profile. In fact, 
the restoring topographic force prevents the current from diffusing to the beach, and 
the conservation of potential vorticity increases or maintains the maximum mean 
vorticity. 

The nonlinear stability calculation uses the well-known contour dynamical method 
(Zabusky, Hughes & Roberts, 1979), with a novel feature presented by the topography 
which requires the computation of the appropriate Green’s function (52). From this the 
stream function as well as the velocity components can be computed for any 
disturbance, leading to integral-differential equations which govern the evolution of 
the potential vorticity fronts. 

The topography discontinuities in our model raise novel technical considerations 
relative to the implementation of contour dynamics, which are analysed in 53. Most of 
the initial conditions for the main calculations (54) are the normal modes of the linear 
problem, starting with the mode of maximum growth rate, but some calculations with 
different scales are also given in $5 .  In all runs, the growth of an initially small- 
amplitude wave causes the flow to break up into a series of constant-potential-vorticity 
pools (cores) surrounded by irrotational as well as deep water. Computation was 
carried out long enough such that the new approximately steady mean vorticity field 
could be computed. ‘Entrainment’ is defined and computed as the volumetric transfer 
across the ‘new’ interfaces of the shear flow. 

Wang (1992) also used a step-like topography in a barotropic contour dynamical 
model to study the interaction of a deep water eddy with a continental slope in the 
absence of a basic current, and was able to illustrate some important shelf processes 
such as cross-topographic exchange, topography eddy formation, vortex propagation 
and topographic trapped waves, but his study did not cover the effect of the cross- 
stream topography on the mean flow as discussed above. In addition, topographic 
instability was also considered in the contour dynamical calculation of Send (1989) but 
the investigated mechanism was due to relative vorticity extrema in the basic state and 
the flux was down-gradient. Grimshaw & Yi (1991) also used contour dynamics to 
discuss cross-stream topographic effects but did not address the instability problem. 
Finally, some relevant contour dynamical examples of shedding of eddies by localized 
topographic features like sea mounts have been analysed by several authors (Kozlov 
1983; Thompson 1993). 

2. Topographic Green’s function 
The Green’s function derived by Wang (1992) is similar to ours and was developed 

at the same time, but an explicit derivation was not presented and this will be supplied 
here, along with a physical discussion involving the method of images. 

2.1. Green’s function for a vortex near an escarpment 
We need to find the stream function induced by the vorticity < in an element of area 
(dtdv) surrounding a point (t, T ) ,  with circulation r = <d[dv. The instantaneous flow 
produced by such a point vortex (figure 3) on either side of the escarpment ( y  = 0), is 
irrotational and non-divergent. The connection conditions at y = 0 were formally 
derived by Spitz & Nof (1991) and simply require continuity of the mass flux 

[ vH]  u(O+) H,, - V(O~)(H,  + A H )  = 0, (2.1) 
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FIGURE 2. Reproduced from Bidlot (1993): An inviscid piecewise-linear barotropic wall jet ( t  = 0) in 
a flat-bottom ocean was perturbed by the most unstable linear mode. The maximum undisturbed jet 
velocity is unity, the vorticity in the cyclonic layer is also unity and 5, < 0 is the vorticity in the layer 
near the wall. (a) = -f .  The unstable evolution of the jet leads at t = 25 to the formation of vortex 
pairs which contain most of the fluid initially in the vortex layers (where the light and dark shaded 
areas respectively correspond to the cyclonic and anticyclonic fluid). (b) c2 = -$. The downstream 
Velocity profile averaged over one wavelength shows a net diffusion of momentum and vorticity as 
the jet widens with time as well as a significant flow reversal region along the boundary with a lateral 
extent comparable to the initial ( t  = 0) width of the anticyclonic layer. (c) A wider jet with c2 = - 1 
yielded similar results to those above. The top curve is the ordinate of the centroid of the fluid with 
cyclonic vorticity, similarly the lower one corresponds to the anticyclonic part of the dipole. The 
curves show the tendency for the dipolar eddies which arise from the instability to propagate to large 
distances from the wall. 



Maintenance of continental boundary-layer shear 

[u] = u(O+)-u(0-) = 0, 

59 

and finite vorticity across the step or continuity of u 

(2.2) 
where u and v are respectively the along- and cross-escarpment velocity components 
and [F]  indicates that the limit of the difference between the value of F on each side of 
y = 0 is taken. In each region, let u = u,, + u,, v = v,, + v,, $ = $,, + where (uo, u,) = 
(- a$,,/ay, a$,,/ax) is defined as the velocity field that would be produced if the depth 
were uniform, and (u,, u,) = ( -a$,/i3yy, a$,/ax) the residual. $,, is the classical two- 
dimensional stream function induced by a point vortex of strength r, located at (& ?) 
as given by 

(2.3) 

Since the flow is irrotational and non-divergent at all y + 0, the residual velocity 
component Y, must satisfy 

Similarly the connection conditions (2.1) and (2.2) become 

r 
$n(x,Y) = ~ l n [ ( ~ - t 3 ~ + ( ~ - ? ) ~ 1 .  

v2 v, = 0. (2.4) 

(2.5) u , , k  O”1 + [v, HI = 0 

and [u,] = E] = [ -21 = 0. 

The solution of (2.4) that satisfies (2.6) is 

where 

I 1 
27c 

v, = - Im { Jnm dk eikx B(k) edyl  sgn( y) 

+1, y > o  
- 1 ,  y < o .  sgn(y) = { 

B(k) must be chosen to satisfy (2.5), or 

[HI + [v, HI = 0. 
ax 

By substituting (2.3), (2.7) in (2.8), and using the identity 

we get 

Then (2.7) gives 

and the associated stream function is 

(2 * 9) 

(2.10) 

(2.11) 

(2.12) 
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FIGURE 3. A point vortex of strength 1" is located at (6,~ =k 0) on one side of an escarpment ( y  = 0) 
modelled by two regions of constant depth. We are interested in the instantaneous velocity induced 
at any point (x,y). 
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FIGURE 4. The flow field for the escarpment problem is equivalent to a constant-depth problem in 
which an image vortex (light arrow) is introduced to account for the step-like topography. The 
original point vortex of strength r is located at (6, 7 + 0) and would produce a flow field at (x, y )  
given by (2.3) if the depth were uniform. The correction due to the presence of the escarpment is 
given by (2.12) and can be viewed as a point vortex of strength r[E/(2+E)]sgn(y) located at 
(g, - q  sgn(7) sgn(y)). Four locations of the latter are possible depending on the relative position of 
both the forcing and the point of interest as shown above. 

where E = AH/H, .  Note that the field (2.12) which is to be added to (2.3) is 
equivalent to the field produced in a uniform-depth fluid by an image vortex of strength 
TI = TE/(2 + E )  sgn ( y ) ,  located at a point (6, - 7 sgn (7) sgn (y ) ) .  

Depending on the respective locations of the initial point vortex (6 ,~ )  and the point 
of interest (x,y) four scenarios for the position of the image vortex are possible as 
sketched in figure 4. The image vortex has an ordinate equal and opposite to the initial 
vortex if y and 7 lie on the same side of the escarpment, otherwise the vortices coincide 
and the image strength TE/(2 + E) reinforces (interferes) with the initial vortex if the 
latter lies in a deep (shallow) region. 
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FIGURE 5. The flow field problem for a row of point vortices of strength r, parallel to the escarpment 
is equivalent to a flat-bottom problem if a row of image vortices of strength r = T [ E / ( 2  + E)] sgn(y) 
is introduced. The image row will be located at the same place as the original row or at its mirror 
image depending on the position of the point of interest (x,y) as shown above. 

2.2. Green’s function for downstream periodicity 
If the initial vortex is replaced by a row of periodic point vortices parallel to the 
escarpment (figure 5) ,  then the sum of the influence of these (Lamb 1932) gives the 
result 

(2.13) 

corresponding to (2.3) and (2.12), where h is the distance between two successive point 
vortices, and @ = @ o + @ l  is the total Green’s function for a periodic problem. 

3. Formulation of the nonlinear stability problem 
beyond the edge 

( y  < 1,) which is located on the shelf in shallow water. The mid layer (0 d y d 1,) has a 
larger potential vorticity than either the y > 1, of they < 0 layer thereby satisfying the 
necessary condition for instability. For periodic disturbances of wavelength A, there are 
three regions of uniform potential vorticity, separated by two interfaces L,(x, t )  and 
L,(x, t). Conservation of potential vorticity requires that any fluid column advected 
across y = 0 or y = I ,  will generate vorticity anomalies c relative to c. For example 
(figure 7 a), any fluid particle which is advected from the irrotational region to a region 
0 < y < 1, where the background vorticity is equal to y has an anomaly c = -c 
Moreover if the parcel crosses the escarpment (i.e. y < 0), stretching of the water 
column produces an increase in relative vorticity equal to Ef, in which case the anomaly 

The very simple basic flow u in figure 6 has constant vorticity 

3 F L M  271 
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is 5' = Ef- A similar procedure can be followed for fluid particles displaced from the 
deep region as they first encounter the step and then the irrotational region. The 
different values of are summarized in figure 7(a ) .  These anomalies will induce 
velocities which when added to the undisturbed shear flow u give the rate of 
displacement of the L,, L, fronts. 

It is convenient to split the problem of computing those instantaneous velocities into 
two simpler ones (figure 7b) ,  each of which contains only one interface. Since the 
combined spatial distribution of from both problems is equivalent to the original 
problem, the sum of the velocity components from both problems is equivalent to the 
corresponding velocities in the original problem. The endpoints of each contour (figure 
7 )  are connected by an horizontal segment to form a closed contour containing all non- 
zero anomalies for the problem in question. 

In problem 2, the vorticity anomalies are 

and the velocity anomalies induced at any (x, y )  are obtained by summing the effect of 
all vorticity anomalies. Consider (figure 8) any infinitesimal element of area d<dy 
surrounding a point (<, 7) within the area (Cz)  bounded by L, > 0 and y = 0 (shaded 
area), and all the periodically displaced counterparts at (<+ kA, r), k = & 1, & 2. .  . . 
These elements have a constant vorticity anomaly ci, therefore they induce a 
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FIGURE 7. (a) Schematic representation of the vorticity anomalies generated when water columns are 
advected across y = 0 and y = 1, by any disturbance L, and L,. (b) The computation of the 
instantaneous velocities is split into two simpler problems with only one interface each. Problem 1 
considers the field associated with the three vorticity anomalies G, [;, (6 - G) enclosed by L, and the 
horizontal segment y = 1,. Similarly problem 2 examines the field produced by the two vorticity 
anomalies 6 and enclosed by L, and y = 0. When the figure for problem 2 is overlapped with that 
for problem 1, the sum of the vorticities yields the total anomalies in (a). 

circulation r = g dcdg corresponding to a row of periodic point vortices of strength 
r on the line y = g,  for which the corresponding stream function is the sum of (2.13) 
and (2.14). We integrate over the area bounded by C,+ to get the effect of all vorticity 
anomalies ch and do likewise for the contribution of the vorticity anomalies <; bounded 
by C; (figure S), thereby obtaining 

?bz(x, Y )  = ?b20(x, Y )  + ?b&, Y ) ,  
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FIGURE 8. The flow field at (x,y) produced by a periodic disturbance can be obtained in problem 2 
by summing the contribution of each vorticity element centred at (6, y) with circulation & df dy 
contained in C; as well as their periodic counterparts, and likewise for 6 d[ dy in C;. 

A€€ <;=(, <;=-(, <i-{i=-((l + E ) ,  E=- 
Ho 

FIGURE 9. In problem 1 ,  the vorticity anomalies have three possible values: 5; if L, > la, 5;: if 
0 < L, < I, and ([i-c) if L, < 0, respectively bounded by the closed contours C,, C,, and C,. 

where 
G(x - <, y - 7) = In sin2 - (x - lJ + sinh, [ (1 ) (3-41 

is the periodic Green’s function. The velocity components are obtained by 

Then Green’s theorem can be used to obtain contour integrals which are solved 
numerically, the actual expressions for which can be found in Appendix B. 

Problem 1 is a little more difficult because if L, < 0 the vorticity anomalies at y < 1, 
can have two different values as shown in figure 7(b). In that case, the three vorticity 
anomalies 5;, c; and are respectively bounded by the closed contours C,, C,, C, 
as represented in figure 9 for a periodic disturbance. The contribution of the L,- 
anomalies is composed of two parts: $lo (the ‘constant-depth’ part) and $11 (the 
‘image’ part). This can be expressed as 

- 
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where i=O C” 

i = O  { 7 sgn (7) sgn ( y ) ,  i = 1. 
T i  = %(TI  = (3.7) 

Note that if L, > 0 everywhere the C, domain in figure 9 disappears and the last term 
in (3.5) is zero. The velocity components [ul i (x ,y) ,  ul i (x ,y)] ,  i = 0, l  are obtained by 
differentiating (3.5) and the resulting area integrals are transformed to line integrals 
using Green’s theorem. The integrals around C,, C,, C, are rearranged to give integrals 
along the entire L,, the segment y = 1, and that portion of y = 0 which intersects L,. 
These intricate expressions are presented in Appendix B. 

Finally, the velocity components at any point (x, y + 0) are given by the combination 
of the two problems plus the action of the basic state U, i.e. 

These velocities are evaluated on the L, and L, contours to compute the position of the 
interfaces at later time using the following set of Lagrangian integral-differential 
equations for the motion of any interfacial point [xj( t ) ,  Lm(xj, t)J,rn = 1,2: 

(3.10) 

Except when mentioned otherwise, the equations were non-dimensionalized using 
the Coriolis parameter ( f )  as the reciprocal of the timescale. A special difficulty which 
arises in solving this system occurs when a [xi, Lm(xj)] point crosses y = 0 where ZI is 
discontinuous. The resolution of this problem and other numerical considerations are 
discussed in Appendix C. The results are discussed next. 

4. Numerical results 

(except as stated otherwise), with the interfaces at t = 0 given by 
The initial perturbation was the most unstable normal mode of the linear theory 

L, = l s + A c o s E x ) ,  I 
(4.1) 

A 4 I,, 
where lLlzl and O,, are respectively the relative amplitude and the phase shift (as 
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FIGURE 10. The evolution of the fastest growing mode for a given non-dimensional step height E, and 
Rossby number Ro (E  = 0.5, Ro = 0.5). The product (27c/h) 1, and the amplitude ratio and phase shift 
between the two interfaces is prescribed by the linear theory. Thus if h = 1, then the initial excursion 
of the shear flow on the shelf 1, = 0.14. The light shaded strip contains the maximum potential 
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derived from (A 15)) for given non-dimensional shear Ro = c / f  (or Rossby number) 
and cross-stream topographic change E. When a value for 1, is chosen, the wavelength 
h of the disturbance is prescribed by the maximum growth rate of the linear analysis. 
In most runs the amplitude factor A was small enough ( N lo-,) to allow a comparison 
of the numerics with the linear theory, but no significant differences were noticed if 
somewhat different values are chosen; this will only alter the time required for the 
nonlinearities to be noticeable. Thus, only two parameters remain: E and Ro. For 
clarity, we will only discuss in detail cases with E = 0.5 because similar features were 
observed for other values of E (see figure 13 for the extent of the parameter range 
explored and computed). 

When Ro = E, the potential vorticity of the irrotational ( y  > 1,) and deep region 
( y  < 0) are equal (figure lo),  and the early evolution (figure 10a) is as predicted by the 
linear theory with the crest and trough of each interface growing exponentially with 
time. Consistent with this growth is the phase shift between L, and L, which ensures 
that the positive vorticity anomalies in the L, crest induce a net ‘upward’ (amplifying) 
motion on the nearest L, crest and vice versa. As the disturbance gets larger (figure 
lob),  straining by the mean shear causes interfacial steepening ahead of the L, trough 
and behind the L, ridge, leading to the roll-up and core formation ( t  > 30), as in the 
classical Kelvin-Helmholtz problem (Pozrikidis & Higdon 1985). Figure 10 (c)  clearly 
shows the accumulation of high potential vorticity into well-defined cores along the 
escarpment whereas the maximum penetration of the disturbance in adjacent regions 
is limited. The emerging state, even though not strictly steady, seems to consist of cores 
(pools) of maximum potential vorticity, around which tongues of lesser-potential- 
vorticity fluid from the deep as well as from the irrotational shallow region wind 
(figure lOd, e). Also shown in figure 10 is the x-averaged relative vorticity distribution 
&y), obtained for any given y by finding the length of the horizontal segments 
intercepted by the various contours. The corresponding mean velocity distribution was 
obtained by integrating &y) = -ati(y)/ay. The amount of different water ‘types’ (fluid 
with different shading and potential vorticity) transported across the escarpment was 
also computed. Note that the pinching-off of the interfaces tends to trap ‘deep’ 
water on the shelf ( y  > 0). This water is partially replaced by high-potential-vorticity 
core water whose stretching accounts for the region of maximum mean vorticity at 
y < 0. This illustrates how a counter-gradient vorticity flux can maintain a maximum 
shear and oppose any type of diffusive action tending to reduce the peak value. The 
topographic instability in figure 10 may suggest a new statistically (x-averaged) $eady 
state with maximum mean vorticity increased by 70%, and the small positive c(y) at 
y > 1, implies that deep water will always ( t  > 0) occupy the upper shelf region. (But 
the continual shoaling of the real continental topography would inhibit the spreading 
to large positive y ,  i.e. the ‘beach’ zone.) Likewise, filaments from the upper shelf are 
entrained near 0 < y < I,, would around the core and advected with the mean field far 
downstream from its place of origin on the upper shelf. The oceanographic significance 
of this water-type transport is discussed in the conclusion. 

When Ro is increased (figure l l ) ,  with E and 1, constant, the most unstable h is 

vorticity and the two dashed lines represent the undisturbed frontal positions. The initial condition 
is given by (4.1) with A = lo-’. The timescale is the reciprocal of the Coriolis parameter. The 
nonlinear effects are apparent at t = 20 (b) and lead to the formation of well-defined cores of uniform 
potential vorticity (light shaded areas) surrounded by entrained water from the deep region (dark 
shaded areas) and the irrotational region (c-e). In parallel with the evolution of the interfaces, the 
cross-stream vorticity distribution L&) and the along-escarpment velocity zi( y )  averaged over one 
wavelength are shown. 
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Similar to figure 10, except for Ro = 1, h = 1.25 (same ls), A = 1.25 x Note that 
less than two wavelengths are shown. 
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FIGURE 12. Similar to figure 10, except for Ro = 0.25, h = 0.65 (same ls), A = 0.65 x lo-'. Note 
that a little bit more than three wavelengths are shown. 

increased and the linear growth rate is increased too. The stronger effect leads to more 
deep water per wavelength on the shelf (figure 11 e)  than occurred previously, and less 
irrotational water is entrained around the eddy. 

On the other hand, when Ro < E (figure 12), the topographic restoring forces 
become stronger relative to the shear effect, and growth rate is reduced. Pooling still 
occurs but the emerging cores are now mainly surrounded by water which originated 
from the outer shelf region, whereas the portion of deep water transported across the 
shelf break is smaller than in figure 11. Note that in this case (Ro < E )  the irrotational 
water crossing y = 0 acquires a greater relative vorticity than the undisturbed value, 
and thereby adds (along with the core water) to the increased mean vorticity (figure 
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FIGURE 13. (a) Non-dimensional entrained volume per wavelength of irrotational shelf water into the 
shear flow (see text) and (b) non-dimensional volume transport of deep water across the shelf break 
as a function of Ro and E for the fastest growing normal mode and given 1,. The depth of the shallow 
region (H,) was chosen as the vertical lengthscale in normalizing the volume (these values can be 
converted per unit downstream length but this was not done here because it spreads the curves further 
apart on the graph). 

12c). But we can see that a smaller fraction of the cores appears at y < 0 thereby 
limiting the cross-stream extent of the region of maximum relative vorticity. 
Furthermore the cross-stream penetration of deep water onto the shelf is more 
pronounced even though its volume is smaller. 

Many other cases were investigated for different values of Ro and E as indicated in 
figure 13 which shows the entrained volume of irrotational water per eddy into the 
shear layer, as well as the volume transport of deep water across the shelf break, as a 
function of those two parameters using normal modes with maximum growth rate and 
small initial amplitude at t = 0 for a given value of 1, (chosen such that h = 1 when 
E = Ro = 0.5, figure 10). In each case, the depth of the shelf is the vertical lengthscale. 
The entrained volume was defined and computed as follows (Stern & Bidlot 1994). The 
branch of L, in the ridge of the amplifying wave (figure 12b) winds counterclockwise 
around the core, and approaches the trailing branch of L, in the trough of the wave. 
Close contact of the L, branches occurs at the arrows in figure 12(d), at which point 
a ‘cut’ is made to form a multiconnected L,. One portion of this constitutes a ‘new’ 
shear flow interface, outside which is purely irrotational fluid and inside which are the 
cores plus the entrained irrotational fluid. In this study, the cut is made when and 
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where the distance between the two corresponding branches is less than the average 
distance between successive Lagrangian points (e.g. in figure 1 2 4  the cut was made at 
the arrows). The volume of irrotational water entrained inside the new L, interface is 
plotted in figure 13 (a). Similarly (figure 12 b), each ridge of the amplifying L, wave is 
squeezed at its base ( y  = 0) between two consecutive wedges of shelf water winding 
around the cores. This leads (figure 12c) to the pinching-off of a finite volume of deep 
water on the shelf. A cut was made in a manner similar to L, when the two branches 
were in close contact above y = 0 (see dashes in figure 1 2 4  and the isolated volume 
defines the transport of deep water across the shelf break (figure 13b). 

The limiting case of Ro going to infinity (achieved physically if the Coriolis 
parameter is set to zero) was calculated by changing the timescale to the reciprocal of 
the basic-state vorticity, and the values for the entrained volumes agree with 
extrapolations obtained from figure 13. For very small shear (figure 13), the initial 
distance (I,) between the two fronts is large relative to the wavelength, thereby reducing 
the mutual interaction between the interfacial waves. Although nonlinearity causes the 
slowly amplifying L, wave to break, it never reaches y = 0. In that case, only a small 
portion of irrotational fluid is entrained in a manner similar to the study of ‘shingle 
formation’ at a single shear-layer interface (Stern 1985; Dritschel 1988). No wave 
breaking occurs for L,, but rather a finite-amplitude topographic oscillation, similar to 
what would occur in a constant shear in - K < y < -t K. The larger the step the 
stronger the shear needs to be to produce breaking. 

When Ro is of order +E, cross-shelf transport (figure 13b) appears first as a long 
filament containing a small amount of deep water which winds around the cores, and 
then for larger Ro a larger volume is pinched off just above the escarpment, as shown 
in the three examples given above (figures 10-12). Figure 13(a) shows that for any 
given geometry, an increasing shear will first increase the amount of originally 
irrotational fluid that can be trapped inside the shear layer until a maximum is reached 
(around Ro - 0.7-0.8E), followed by slower decrease of the former amount. On the 
other hand (figure 13b), the exchange between the deep and the shelf region increases 
monotically with the background shear. 

As shown earlier the mean relative vorticity is increased to higher values than the 
corresponding background value through a counter-gradient vorticity flux. To 
characterize this we can look at the relative difference between the maximum average 
relative vorticity and the background value: (im,,, - c)/gfor y 6 0, which is plotted in 
figure 14(a) for the three cases studied above. First note that the initial normal mode 
with infinitesimal L,(x, 0) < 0 produces a finite vorticity anomaly because of the 
escarpment discontinuity, and this immediately yields - c)/c= 0.5E(1+ Ro)/Ro. 
The increase in ordinate at t > 0 is due to the broadening at y < 0 of the corresponding 
cyclonic anomaly region (figures lob, I lb ,  12a). At later times (figure 14a) a sharp 
drop in imaz occurs when originally irrotational shelf water is transported across the 
escarpment, replacing core water, thereby generating weaker vorticity anomalies. The 
evolution thereafter depends on the relative proportions of originally irrotational and 
core water on the deep side of the step. The dashed lines in figure 14(a) represent the 
time average over an interval which spans from t = 0 to t,, the time at which a new L, 
interface has reformed. These average values are plotted (solid line) in figure 14(c) for 
the parameter range considered here. Note that even though the instantaneous 
maximum oscillates, the time average is approximately equal to the initial value. 
Therefore a larger step and/or a smaller shear will produce a larger relative increase 
in vorticity. 

A useful measure of nonlinear finite amplitude is the width of the high-vorticity 
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FIGURE 15. Same as figure 10, except for h = 2 (i.e. the first harmonic is the most unstable wave). 
Note the scale distortion. 
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FIGURE 16. Same as figure 10, except for h = 4 (i.e. the second harmonic is the linearly most 
unstable wave). Only one wavelength is shown. Note the scale distortion. 

region 8, defined as the distance from y = 0 to the pointy < 0 where the x-average total 
vorticity returns to its background value. Figure 14(b) shows the evolution of 6 for the 
same three cases as before. The early growth (t/t, < 0.4) extends well into the nonlinear 
regime until wave breaking produces distinct cyclonic cores and irrotational water 
returns on the shelf (figures lOc, 11 c, 12b). At that point, 6 levels off and its subsequent 
evolution follows the evolution of the cores as they oscillate across the step. A mean 
penetration $was defined by taking the average over [t,, t,], where t, is the earliest time 
at which the (exponentially) growing 6 equals the minimum 6. For Ro = 0.25 (figure 
14b) min S occurs at time/t, = 0.9 and t,/t, FZ 0.4. The dashed curves in figure 14(c) 
shows that Sincreases when the topographic constraint is relaxed (smaller E) ,  and fluid 
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columns crossing the escarpment can penetrate further in the deep region before 
curving back towards the shelf, thereby producing a wider region of high vorticity. 
The value of $/l, increases with Ro, except for a localized minimum (dent) around 
Ro z +E, implying that instability of a stronger shear flow will result in a wider region 
of increased vorticity, even though a smaller relative maximum in vorticity occurs as 
already mentioned. A partial compaction of the dependence of $71, on Ro and E is 
given in the summary diagram (figure 14d). 

5. Other initial conditions 
In all previous runs the normal mode with maximum growth rate was used as initial 

condition. As in the study of geostrophic shear layers (Pratt & Pedlosky 1991), we may 
ask if the spacing between vortex cores is determined by the initialization A. If we 
initialize the problem with one normal mode whose harmonics may have larger growth 
rate, then the primary wave may generate higher harmonics through nonlinear 
wave-wave interaction, and these harmonics may grow more rapidly even though they 
will have zero amplitude initially. We can view such a run as a competition experiment 
between a primary wave and its harmonics. In our case we can see from the linear 
calculations (figure 20) that not all modes are linearly unstable owing to the existence 
of a long-wave cut-off. We will focus on small initial disturbances and only consider 
unstable waves. This is the case when E = Ro = 0.5, for which the corresponding 
fastest growing mode was analysed in figure 10. A doubling of the wavelength to h = 2 
in (4.1) will result in an initial wave whose first harmonic has a wavelength equal to 
the fastest growing mode for the given geometry; note however that the initial 
condition only contains one mode, i.e. the primary one. As shown in figure 15, the 
overall evolution is qualitatively similar to the previous cases : the high-potential- 
vorticity fluid pooling into detaching eddies combined with mixing of irrotational and 
deep water. Note that once the different water types are fully wound around the cores, 
the scale is entirely dominated by the eddy spacing given by the primary wavelength 
( A  = 2). The entrainment process is stronger in this case for both water types, with a 
non-dimensional entrained volume of 14.8 and a transport of 17.3 compared (figure 13) 
respectively to 5.1 and 4.5 for the fastest growing normal mode. Furthermore, the 
perturbation penetrates deeper into the deep region (figure 14c) ($/& = 1.4 compared 
to 0.77) but with smaller relative maximum in relative vorticity (0.62 versus 0.75). These 
stronger effects may be partially attributed to the larger wavelength, but the qualitative 
result stands even if we consider the entrained volume per unit downstream length. 

When h = 4 is selected as the primary wavelength. The competition is now between 
this wave, its first harmonic (the primary wave of the previous case), and its second 
harmonic (the fastest growing wave). The evolution of this mode is plotted in figure 16 
(note that only one primary wavelength is shown). The calculation was stopped before 
the final entrainment stage could be recognized but as shown in figure 16(d) a large 
amount of ‘deep’ water has penetrated on the shelf with the primary cores straddled 
over the escarpment, thereby generating a substantial region of maximum vorticity 
($/lS z 2.5) with a smaller relative maximum value (x 0.4). Notice that signs of the 
shorter-wave spectrum are visible as secondary bulges emerge ; however primary cores, 
spaced by a distance equal to the primary wavelength, subsequently dominate the 
evolution by wrapping and straining these secondary eddies around the cyclonic cores. 

Following Pratt & Pedlosky, another type of competition experiment can be 
achieved by initiating a run with two waves having equal growth rate but different 
phase structure. In this case the initial condition is given by 
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FIGURE 17. Competition experiment between two normal modes of equal growth rate with 
wavelengths given by A, = 1.5318 and A, = ;Al and zero phase lag between them. 

L,=l,+Acos -x +Acos -x+8, (: 1 (: 1 I 
L, = AA,cos -x+8, +AA,cos - x + 8 , + 8 ,  (: 1 (: ii (5.1) 

where A, and 8,, and A ,  and 8, are respectively the amplitude and the phase shift as 
given by the linear theory for the first and second waves. 8, is the adjustable phase of 
the second wave relative to the first. As before we select the two waves in the same 
unstable regime and geometry. If A, = 1.5318 and A,  = +A2, then the two waves have 
the same growth rate (figure 20). The phase shift 8, is set to zero initially. The presence 
(figure 17a, b) of both wavelengths is evident in the first stage and the core spacing is 
equivalent to the shortest wavelength. But the subsequent evolution (figure 17c) leads 
to the merger of consecutive cores and produces a net increase in the mixing ability of 
the flow by forcing a deeper penetration of the disturbance into the adjacent regions. 
It is interesting to note that this result generalizes the instability theory applied to a 
vortex street structure (Saffman & Schatzman 1982) since the A, wave can be viewed 
as a sub-harmonic perturbation to the periodic vortex distribution with spacing A,. For 
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such a case we can expect the vortices to merge with their neighbours to form a larger- 
scale structure with wavelength A,. Similar features appear when the phase lag 8, is 
varied (not shown), but the orientation and staggering of the pools differs from 
figure 17. 

6. Conclusions and suggestions 
We have computed the finite-amplitude evolution of a non-inflected shear flow 

destabilized by a cross-stream variation of topography, in order to illustrate an 
apparently ubiquitous effect in continental boundary currents, namely the counter- 
gradient vorticity flux, or the increase in maximum mean vorticity, as summarized in 
figure 14. This effect is to be contrasted with the rapid diffusion of mean vorticity which 
would occur in the barotropic instability of a flow (figure 2) without topography, and 
in which the relative vorticity was conserved. The same kind of vorticity diffusion 
would occur (independent of mechanism) in any classical (dispersive) parametrization 
of the effect of the eddies on the mean flow. 

The applicability of our model to real continental boundary currents is limited by the 
absence of stratification and other kinds of topographic effects (e.g. Bane 1983). 
However, the oceanic isopycnals tend to have a similar cross-stream variation as the 
isobaths, and the relevant oceanic eddies conserve potential vorticity ; so that the 
counter-gradient vorticity flux (figure 14) may be rather insensitive to the mechanism 
by which the eddies are generated and evolve. It is suggested that those potential- 
vorticity-conserving effects maintain such strong inshore lateral shears as is observed 
in the Gulf Stream. We also note the well-known rectification effect of baroclinic 
instability in the atmospheric jet stream (Pedlosky 1987) in which counter-gradient 
momentum (as well as vorticity) effects occur. 

The simple escarpment model has also been used to illustrate the cross-slope transfer 
of conservative water mass properties like potential vorticity (fluids with different 
shadings in all our figures), temperature, salinity and nutrient in the more realistic 
oceanic case. Figure 12(d) for example, shows how an instability leads to the formation 
of a ‘new’ potential vorticity interface across which there has been entrainment of the 
‘inshore water mass’, and figure 13 documents some of the volumetric transfers. 

For further information about the oceanic processes alluded to, see the literature 
connected with frontal eddies observed at the edge of the Gulf Stream along the coast 
of the Southeastern United States (Vukovich et al. 1979; Zantopp, Leaman & Lee 
1987; Lee et al. 1985, 1991) and at the edge of the Kuroshio as it flows along the steep 
continental slope of the East China Sea (Sugimoto et al. 1988; Qiu et al. 1990). Such 
frontal eddies are characterized by alternating tongues of cold and warm water which 
may originate from onshore or offshore advection as well as upwelling, see figure 4 in 
Lee et al. 1991 for a schematic representation of Gulf Stream frontal eddies as well as 
the satellite images found in Vukovich (figures 1-3), Lee et al. (colour plate 1) and 
Zantopp et al. (figures 3-6). These perturbations travel downstream and evolve 
through various stages. When the growth seems to have stopped, the cold water tongue 
is advected back to the shelf-trapping warm water on the shelf (figure 3 in Vukovich 
et al.). During all stages a large portion of the eddies remains on the shelf, the rest, 
generally part of the cold tongue, is advected in the stream (figure 11 in Sugimoto 
et al.). 

The idealized escarpment model might also be used in interpreting numerical results 
obtained from continuous barotropic models. In that context, and for order of 
magnitude purposes, 1, might be associated with the cross-stream width of the potential 
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vorticity maximum in the continuous model, < might be associated with its maximum 
shear, and AH might be associated with 1, i3ho/i3y, where i3ho/ay is a typical continental 
slope, Then figure 14(c) should provide an estimate of the penetration depth (8) of the 
vorticity anomaly, and the latter should be of order of f$ah,/ay/h,,. It is also interesting 
to speculate on the role of gas a ‘mixing length’, indicative of the degree to which water 
masses of different properties are brought into such close contact that much smaller 
‘turbulent ’ processes are initiated, including classical vorticity diffusion. This could 
reestablish a new unstable state leading to a new instability and to further entrainment 
of irrotational shelf water into the shear flow. 

This work was supported by the Office of Naval Research, grant 1368-632-27 

Appendix A. Linear instability theory for figure 6 
For smooth mean flow u and topography h (figure l), the linearized potential 

vorticity equation for small-amplitude waves (prime quantities) with complex phase 
speed c and wavelength 2 x / h  can first be written as 

where 

If M denotes the mass transport function then 

(A 3) 
aM aM 
2Y ax 

hu‘ = -- and hu‘ = +-. 

In figure 6, the unperturbed shear flow with constant vorticity is 

and 

where H ,  is the mean depth, r = E/ (2+E) ,  and E = AH/Ho. 

and conservation of mass across y = 0 can be expressed as 
The discontinuity at y = 0 and 1, require the specification of connecting conditions, 

[MI = 0. (A 6) 

where [ ] denotes the jump discontinuity across the PV-interface in question. 
The second matching condition for M is found by integrating (A 1) for a continuous 

field and then taking the limit. When u’ and 0’ are eliminated using (A 2), and (A 3) the 
result for Y = 0 or y = can be written as 
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FIGURE 18. Non-dimensional wavenumber K for the marginally stable and the fastest growing waves 
as a function of the Rossby number Ro for given values of the non-dimensional step height E. The 
shaded areas bounded by the marginally stable curves indicate the unstable regions. 

At y = I ,  where the depth is continuous this becomes 

and at y = 0 where the background vorticity is continuous we get 

In each region where the background vorticity and the fluid depth are constant M 
is a harmonic function. The solution for a normal mode is 

M(x,  y )  = i@( y )  eikz, k > 0, (A 10) 

(A 11) 

Y 2 1, 

0 < y < 1, 

Y d 0, 

e-k'Y-ls' 

&?( y )  = cosh (k(y  - 1,)) + A  sinh (k( y - I,)), 
[cosh (kl,) - A  sinh (kl,)] eEy, 

A = (E/kc)- 1. (A 12) 

The last connecting condition (A 9) yields the dispersion relationship. After some 
algebra this reduces to a quadratic equation for l /c,  which can be written in non- 
dimensional form as 

P2{K(eK + re-K) - rF(e" - eP)} + P((2rF- 1 - 2 ~ )  eK - reP} + 2e" = 0, (A 13) 
where 

" 
where (A 6 )  has been used. The constant A satisfying (A 8) is 

and where /3 gives the reciprocal phase speed. 
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FIGURE 19. Non-dimensional wavenumber K for the marginally stable and the fastest growing waves 
as a function of the non-dimensional step height E when the Coriolis parameterf= 0. The shaded 
area indicates the unstable region. 

Figure 18 shows a plot of the non-dimensional wavenumber ( K )  for the marginally 
stable waves as well as the fastest growing one as a function of the Rossby number Ro 
(non-dimensional shear) for different values of the step height (E) .  The shaded areas 
indicate the unstable regime. Except when E = Ro, there is a snort- and a long-wave 
cut-off. In the case E < Ro, i.e. the background potential vorticity of the deep region 
is less than the corresponding value in the irrotational region on the shelf, the width 
of the unstable region decreases as Ro decreases. It can be shown that in the limit of 
large F (small shear) the unstable band behaves like rF. On the other hand, when 
Ru > E, increasing Ro will reduce the unstable bandwidth. In the limitf= 0, the flow is 
still unstable as shown in figure 19 as soon as a step is present (E  > 0). 

By linearizing the kinematic relationship which links the cross-escarpment velocity 
u' = ( l / h ) ( t M / a x )  to the total time derivative of the ordinate of any point on one of 
the two interfaces (L,(x, t ) ,  L,(x, t ) ) ,  it can be shown that the ratio of their complex 
amplitudes is 

(A 15) 
Li - cosh ( K )  - (b- 1) sinh ( K )  
- - 
L, 1 - p K  

and 

where the superscripts + or - indicate respectively a positive or negative L,. Note that 
the slope of L, is discontinuous at y = 0 but the phase shift with respect to L, is the 
same for both positive and negative L,. The expressions (A 15)  and (A 16) were used 
to determine the initial condition for the contour dynamical computations. 

Finally figure 20 shows typical growth rate curves (kci us. K )  when the shear is varied 
for a given topography. Also shown is the phase shift between the two PV-interfaces. 
For long waves (small K )  the phase lag is close to zero and at the short-wave cut-off, 
the two interfaces are phase lagged by 180" (n). Note that for unstable waves, L, lags 
behind L, in a matter that favours growth of the disturbance through motion induced 
by the vorticity anomalies created when the PV-interfaces are disturbed. 
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FIGURE 20. (a)  Non-dimensional growth rate kcJ f  versus the non-dimensional wavenumber K = 
(27c/h) I, for different values of the Rossby number Ro and a given topography (E = 0.5). The numbers 
in parentheses refer to the figure's numbers showing the nonlinear evolution of those waves. (b) Phase 
lag between the normal mode along y = I, and y = 0 versus K for different values of Ro and a given 
topography E = 0.5. 

Appendix B. Velocity components for $ 3  
The velocity components in problem 2 are obtained by differentiating (3.3)-(3.4), i.e. 

The linearity of the argument of G(x - 5, y - 7) allows the permutation of the derivative 
variables x and y respectively with -5 and -9 ,  and Green's theorem can be used to 
transform the corresponding area integrals into contour integrals along the entire L2@) 
and y = 0 over one wavelength. These can be written as 
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Similarly, differentiating (3.5) in problem 1 will yield contour integrals along the entire 
L,(g,y = 1, and that portion of y = 0 which intersects L, (figure 9). The resulting 
integrals are 

where Ll(Q < 0 means that the contour integration is only performed where Ll(8 is 
negative, recall that i = 0 corresponds to the constant-depth contribution, and i = 1 
the image contribution, and 

1, i = O  
-E/(2+E), i =  1, 

cut = 

Similarly we get 

ln[sin2((n/h)(x-~)+sinh2((7t/h)(y-7i(Ll(8)))dLl(8 

where 
1, i = O  ce, = {Esgn(y)/(2+E), i = 1. 

Finally, (B l), (B 2), (B 3), (B 4), (B 6) and (B 9) can be used in (3.8) to evaluate the 
total velocity components due to the vorticity anomalies. 
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Appendix C. Numerical considerations 
The numerical technique used here is similar to the one in Stern (1985, 1991b), 

namely the integral-differential equations (3.10) are reduced to a large number of 
ordinary differential equations by introducing discrete Lagrangian points along the 
interfaces. The velocity components were computed using a trapezoidal approximation 
to the integrals, with, as usual, indentation at the logarithmic singularity in the 
expression for u ~ ~ , u ~ ~ ,  rn = 1,2((B I), (B 2), (B 6), (B 9)) where an analytical ap- 
proximation similar to Stern & Pratt (1985) was used since the integration of the 
periodic Green's function over a small interval surrounding the logarithmic singularity 
can be reduced to a form identical to their non-periodic counterpart. 

New features were added to deal with numerical problems due to the depth 
discontinuity at y = 0. Because of this, the interfacial slopes are discontinuous at y = 0 
and a higher resolution in Lagrangian points near y = 0 was required. Furthermore 
the integrands in (B l t ( B  4) are discontinuous at y = 0 and the exact position where 
y = 0 intersects L,(x, t )  is needed to evaluate the integrals in (B 6) and (B 9). For these 
reasons, the intersection of the contours with y = 0 was necessary for an accurate 
evaluation of those contour integrals. Several interpolation schemes were tried and the 
simpler one was retained. This involved a simple linear interpolation between the 
closest Lagrangian point on each side of the corresponding intersection with y = 0. In 
the same context, when the Lagrangian points were the only integration nodes in the 
trapezoidal quadrature to the integral in (B 3), a poor approximation was obtained if 
IL,(C, t)l < 1, because the integrand in (B 3) varies rapidly over a small interval of order 
of a few Lagrangian point spacings. Indeed, when [L,([, t)l < 1, the integrand behaves 
like In (2) if 5 = x,y = L,(Q, but if the integration variable (c, L,(Q) is not in the close 
neighbourhood of (x, L,(x)), the integrand behaves like In (1) = 0. This problem is 
particularly acute at the earliest stages of the evolution of a small-amplitude 
disturbance, and can be alleviated if a function is added and subtracted to the 
integrand. The resulting integrand can be split into an analytically integrable part and 
a smoother function which can be integrated more accurately with the usual 
trapezoidal quadrature. Namely, if (xi, Li) denotes any Lagrangian point on L, then 
the integrand in (B 3) can be smoothed out by subtracting a function g(xj, Lj, [) that 
can be analytically integrated. Thus we can rewrite (B 3) as 

and Int is its exact integral: 

Int = g(xj, Lj, 6) d[ = 2nS(Lj) Li. L 
A similar procedure can be used for the first integrand in ((B 6), i = 1). 

Unfortunately, the second integrals in that expression cannot be reduced to a known 
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integral. The same applies to (B 4) and ((B 9), i = 1). Once again the integrands in those 
integrals vary rapidly over a small interval which straddles the Lagrangian point where 
the integrals are evaluated if this point is close to y = 0. A local increase in point 
resolution was found to grasp most of the variation and was applied by using extra 
integration nodes, linearly interpolated between the three successive Lagrangian points 
defining the interval over which the integrand varies the most. These integration nodes 
are just computational artefacts and never appear in the array describing the interfaces. 

A second-order Runge-Kutta scheme was used in the temporal integration of the 
periodic disturbance, except for Lagrangian points which cross y = 0 over a given time 
step. In this case, the second-order scheme incurs excessive errors because of the cross- 
escarpment velocity discontinuity, and therefore the following procedure was used. 
The time step At = Atl + At2 was split into two parts, where Atl is the time taken by 
(say) a deep-water parcel to go at constant speed zi > 0 from y = L < 0 to y = 0. Then 
the velocity was changed according to (2.1), and the new zi was used to compute the 
displacement in the remaining time interval At2. A similar procedure was used for a 
parcel at y = L > 0 which crosses the escarpment in one time step. No such treatment 
was necessary for the x-component of the Lagrangian parcel. 

To maintain proper resolution along the contours a slightly modified version of 
Meacham’s (1991) point rearrangement scheme was used. Also, long filaments with 
negligible area were smoothed out automatically in an attempt to keep the number of 
Lagrangian nodes as low as possible. 

A preliminary check of the initial velocity field as well as the evolution of the periodic 
disturbance was obtained by using as initial condition a normal mode from the linear 
analysis with small amplitude, and by comparing the results with their linear 
counterparts like velocity components, growth rate, and phase speed (Appendix A). 
Stokes theorem was used to check the accuracy of the velocity field for larger 
disturbances, by computing the circulation around any closed curve in the region of 
interest and comparing the result with the integrated vorticity enclosed by that curve. 
The errors in entrainment volume could be ascertained by monitoring errors in 
conserved quantities like the volume bounded by each interface and y = 0. 
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